Shape insensitive optimal adhesion of nanoscale fibrillar structures.
نویسندگان
چکیده
Gecko and many insects have adopted nanoscale fibrillar structures on their feet as adhesion devices. Here, we consider adhesion between a single fiber and a substrate by van der Waals or electrostatic interactions. For a given contact area A, the theoretical pull-off force of the fiber is sigma(th)A where sigma(th) is the theoretical strength of adhesion. We show that it is possible to design an optimal shape of the tip of the fiber to achieve the theoretical pull-off force. However, such design tends to be unreliable at the macroscopic scale because the pull-off force is sensitive to small variations in the tip shape. We find that a robust design of shape-insensitive optimal adhesion becomes possible only when the diameter of the fiber is reduced to length scales on the order of 100 nm. In general, optimal adhesion could be achieved by a combination of size reduction and shape optimization. The smaller the size, the less important the shape. At large contact sizes, optimal adhesion could still be achieved if the shape can be manufactured to a sufficiently high precision. The robust design of optimal adhesion at nanoscale provides a plausible explanation for the convergent evolution of hairy attachment systems in biology.
منابع مشابه
Tuning the geometrical parameters of biomimetic fibrillar structures to enhance adhesion.
Fibrillar structures are common features on the feet of many animals, such as geckos, spiders and flies. Theoretical analyses often use periodical array to simulate the assembly, and each fibril is assumed to be of equal load sharing (ELS). On the other hand, studies on a single fibril show that the adhesive interface is flaw insensitive when the size of the fibril is not larger than a critical...
متن کاملO 7: KCNK2 Regulates the Nanoscale Formation of Immune Docking Structures on Brain Endothelial Cells Under Autoinflammatory Conditions
KCNK2 was previously shown to regulate immune-cell trafficking into the central nervous system (CNS). Kcnk2-/- mice demonstrated a more severe disease course in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, due to an increased immune-cell migration into the CNS. An upregulation of the cellular adhesion molecules ICAM1 and VCAM1 on brain endothelial cells in K...
متن کاملSimulation of synthetic gecko arrays shearing on rough surfaces.
To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behaviour of a plurality of hairs acting in shear on simulated rough surfaces using analytically deriv...
متن کاملDesign of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion.
This study addresses the strength and toughness of generic fibrillar structures. We show that the stress sigmac required to pull a fibril out of adhesive contact with a substrate has the form sigma(c) = sigma(0)Phi(chi). In this equation, sigma(0) is the interfacial strength, Phi(chi) is a dimensionless function satisfying 0 <or= Phi(chi) <or= 1 and chi is a dimensionless parameter that depends...
متن کاملInteractions between lipid-free apolipoprotein-AI and a lipopeptide incorporating the RGDS cell adhesion motif.
The interaction of a designed bioactive lipopeptide C16-GGGRGDS, comprising a hexadecyl lipid chain attached to a functional heptapeptide, with the lipid-free apoliprotein, Apo-AI, is examined. This apolipoprotein is a major component of high density lipoprotein and it is involved in lipid metabolism and may serve as a biomarker for cardiovascular disease and Alzheimers' disease. We find via is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 21 شماره
صفحات -
تاریخ انتشار 2004